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We show that the critical behavior of two- and three-dimensional frustrated magnets cannot reliably be
described from the known five- and six-loop perturbative renormalization-group results. Our conclusions are
based on a careful reanalysis of the resummed perturbative series obtained within the zero-momentum massive
scheme. In three dimensions, the critical exponents for XY and Heisenberg spins display strong dependences
on the parameters of the resummation procedure and on the loop order. This behavior strongly suggests that the
fixed points found are in fact spurious. In two dimensions, we find, as in the O�N� case, that there is apparent
convergence of the critical exponents but toward erroneous values. As a consequence, the interesting question
of the description of the crossover/transition induced by Z2 topological defects in two-dimensional frustrated
Heisenberg spins remains open.
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I. INTRODUCTION

After more than 30 years of intensive studies, the critical
behavior of frustrated magnets is still controversial �see Ref.
1 and references therein�. At the root of the problem is the
competition between the interactions among neighboring
spins that gives rise to a canted ground state, and thus, to a
symmetry-breaking scheme where the rotational group is
fully broken. This is, for instance, the case in the paradig-
matic example of frustrated magnets, the stacked triangular
antiferromagnets �STAs�, where the three spins on an el-
ementary cell display a planar 120° structure in the ground
state. As a consequence, the order parameter is a matrix in-
stead of a vector �a SO�3� matrix for Heisenberg spins and a
2�2 matrix for XY spins� and the critical properties are
therefore entirely different from those of unfrustrated sys-
tems.

For instance, in space dimension d=2, the first homotopy
group of SO�3� being nontrivial—�1�SO�3��=Z2—one ex-
pects for Heisenberg spins a deconfinement of topological
excitations2 that could give rise to a Kosterlitz-Thouless
�KT�-type transition3,4 or, at least, to a crossover behavior—
see below. Numerous experimental5–9 and numerical2,10–17

studies have indeed shown indications of a nontrivial phe-
nomenon occurring at finite temperature. For XY spins,
the order parameter space is given by SO�2��Z2. In
this case coexist Ising degrees of freedom, topological
excitations—�1�SO�2��=Z—and spin waves. A very de-
bated issue has been the nature of the phase transition�s�
occurring in this system as the temperature is varied: either
two separate Ising and KT transitions or a unique one �see
Ref. 18 and references therein�.

In d=3, the question of the criticality has been extremely
controversial �see Ref. 1�. On the one hand, many experi-
ments display scaling behaviors for XY and Heisenberg
spins with critical exponents differing from those of the
O�N� universality class �see Ref. 1 for a review�. On the
other hand, other experiments as well as extensive Monte

Carlo simulations performed on STAs or on similar models
have exhibited weak first-order behavior.19–27 Two main ex-
planations have been proposed to describe these contradict-
ing results.

The first one is based on a perturbative renormalization-
group �RG� approach performed at fixed dimension �FD� ei-
ther within the minimal-substraction �MS� scheme without �
expansion28 or within the zero-momentum massive
scheme,29–32 at five- and six-loop order, respectively. Within
these approaches, stable RG fixed points were found for N
=2 and N=3 leading to the prediction of second-order phase
transitions in d=3 for frustrated magnets. Note that, within
these FD approaches, one also finds a fixed point in d=2
with nontrivial critical exponents in the N=2 and N=3
cases.31,33,34 This fact has led to the hypothesis of a
Kosterlitz-Thouless-type behavior induced by Z2 topological
defects for Heisenberg spins.33

The second explanation is based on both the �=4−d �or
pseudo-�� expansion35–37 and the nonperturbative RG
�NPRG� approaches.1,38–41 In these approaches, one finds
that there exists, within the �d ,N� plane, a line Nc�d� that
separates a second-order region for N�Nc from a first-order
region for N�Nc. Within the � expansion, one finds Nc�d
=3��5.3,37 pseudo-� expansion gives Nc�d=3��6.23 �Ref.
36� and within the NPRG approach Nc�d=3��5.1 �Ref. 1�
so that the transition for N=2 and N=3 are predicted to be of
the first order. A thorough analysis performed within the
NPRG approach1,38,40 has shown that even if there is, strictly
speaking, no fixed point below Nc�d=3� the RG flow is very
slow for N=2 and 3 in a whole region of the coupling con-
stant space so that there is pseudoscaling without universal-
ity on a large range of temperature, in agreement with the
numerical and experimental data.

Although the NPRG approach very likely explains the
whole body of known data �see Ref. 1 for details�, several
points of the physics of frustrated magnets remain controver-
sial. The first one is that, although the occurrence of �weak�
first-order transitions is by now well established in several

PHYSICAL REVIEW B 82, 104432 �2010�

1098-0121/2010/82�10�/104432�12� ©2010 The American Physical Society104432-1

http://dx.doi.org/10.1103/PhysRevB.82.104432


three-dimensional systems,19–27 this does not imply that all
systems, sharing the same order parameter and the same
symmetries, undergo first-order phase transitions �see, for in-
stance, Ref. 28 for a recent numerical computation where a
second-order phase transition is observed�. In other words,
the very existence of a parameter domain where the frus-
trated systems would undergo second-order transitions is still
debated. A second point that should be understood is the
origin of the discrepancy between the two scenarii above
and, in particular, between the results obtained within the
different perturbative schemes: � �or pseudo-�� expansion on
one hand and the FD approaches on the other hand. A last
and important question is the nature of the transition that
occurs in d=2 for Heisenberg spins: phase transition or
simple crossover behavior between a low-temperature—
spin-wave—phase and a high-temperature phase with both
spin waves and vortices ?

It is clear that answering to these questions amounts to
answering to the question of the existence of a genuine at-
tractive fixed point in the RG flow of frustrated magnets
in d=3 and 2 for N=2 and 3. In the perturbative frame-
work, this is essentially equivalent to proving �or disproving�
the reliability and convergence properties of the resumma-
tion procedures necessary to obtain sensible results out of
the perturbative series. This work has been initiated in d=3
in a previous publication where the five-loop perturbative
series obtained in the MS scheme without � expansion have
been carefully reexamined.42 Studying �i� the convergence
properties of the critical exponents with the order L of the
expansion �number of loops� and with respect to the varia-
tions in the parameters involved in the resummation proce-
dure, �ii� the properties of the fixed-point coordinates
�u��d ,N� ,v��d ,N�� considered as functions of d and N, and
�iii� the continuation of the fixed point found in d=3 for N
=2 and N=3 up to d=4, the authors of Ref. 42 have provided
strong arguments in favor of the spurious character of the
fixed points found in d=3, i.e., that they are artifacts of the
perturbative expansion in the MS scheme.

In the present paper, we extend the previous analysis to
the series obtained in the zero-momentum massive scheme in
d=3 at six loops30 and in d=2 at five loops.34 In d=3, we
apply the criteria used in Refs. 42 and 43—principle of mini-
mal sensitivity �PMS� and principle of fastest apparent con-
vergence �PFAC�—and confirm that the fixed points found in
d=3 for N=2 and N=3 are most likely spurious. In d=2, the
situation is more delicate. We recall that, already for the
�nonfrustrated� O�N� models, the critical exponents found
from the ��2�2 field theory are quantitatively wrong although
apparently converged for all N. This striking phenomenon,
already mentioned in Ref. 44 relies on the presence of
nonanalytic contributions to the � function at the fixed
point.45 The same kind of problem has been mentioned in the
case of frustrated magnets33,34 but it was assumed to leave
unaffected the qualitative predictions, in particular, the exis-
tence of a nontrivial fixed point in the Heisenberg case. We
show here, on the contrary, that the phenomenon of apparent
convergence toward erroneous values, together with the pres-
ence of instabilities of some critical exponents with respect
to the resummation parameters, leads to seriously question
the conclusions drawn in the past as for the critical behavior
of these systems.

Our study altogether shows clear evidences that the FD
perturbative approaches to three-dimensional frustrated mag-
nets are not reliable, at least at the orders studied, and that
there is no convincing evidence of a genuine phase transition
induced by vortices in two-dimensional Heisenberg spin sys-
tems. Finally, for the same reasons as in the Heisenberg case,
we show that the behavior of XY spins in d=2 cannot be
elucidated from the five-loop perturbative data.

The paper is organized as follows. In Sec. II, we study in
detail the O�N� case in d=2 and d=3. In d=3, this allows us
to illustrate on a well-known example the kind of stability
�respectively, instability� properties expected for a genuine
�respectively, spurious� fixed point. In d=2, this allows us to
illustrate the fact that there can be fast apparent convergence
of the critical exponents but toward erroneous values due to
nonanalytic contributions. In Sec. III, frustrated magnets are
studied in d=3 and in d=2. In d=3, we confirm the spurious
character of the fixed points found for N=2 and N=3. In d
=2, we show the unreliability of the conclusions—phase
transition controlled by a fixed point—deduced from the re-
sults obtained perturbatively at five loops in the N=3 case.
We then analyze the N=2 case and reach the same conclu-
sions as in the N=3 case.

II. O(N) MODELS IN TWO AND THREE DIMENSIONS

In the following, we study the convergence of the re-
summed perturbative series obtained for the frustrated mod-
els. Since we need to determine criteria to decide whether the
perturbative results are �or are not� converged, we illustrate
briefly how convergence of the resummed series shows up
for the O�N� models in d=3. We show that the behavior of
the correction to scaling exponent � as a function either of
the loop order or of the resummation parameters is a good
indicator of the numerical convergence of the perturbative
results. The exponent 	, when available, is also studied. By
analyzing the two-dimensional O�N� case we also show that,
contrarily to common belief, the five-loop results for the
critical exponents are not converged. The reason of this be-
havior is however rather subtle since there is, in fact, appar-
ent convergence but toward erroneous values, a phenomenon
that we call anomalous apparent convergence.

A. Resummation procedure

As well known, the perturbative series obtained in the
O�N� models for the � function describing the running of the
coupling constant with the scale are not convergent.46,47

They are asymptotic series which, in the case of the zero-
momentum massive scheme, are Borel summable.48 Power-
ful resummation methods have been used in the past that,
thanks to the knowledge of the behavior of the series at large
order, lead to converged and accurate results �see Refs. 47
and 49 for reviews�. We recall in the following the kind of
resummation procedure that we use throughout this paper.

Let us consider a series

f�u� = �
n

anun, �1�

where the coefficients an are supposed to grow as n!.
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The Borel-Leroy sum associated with f�u� is given by

B�u� = �
n

an


�n + b + 1�
un, �2�

where b is a parameter whose meaning will become clear
later.

The resulting series is now supposed to converge, in the
complex plane, inside a circle of radius 1 /a, where u=
−1 /a is the singularity of B�u� closest to the origin. Then,
using this definition as well as 
�n+b+1�=�0

�tn+be−tdt, one
can rewrite

f�u� = �
n

an


�n + b + 1�
un�

0

�

dte−ttn+b. �3�

Interchanging summation and integration, one can now de-
fine the Borel transform of f as

fB�u� = �
0

�

dte−ttbB�ut� . �4�

In order to perform the integral �Eq. �4�� on the whole real
positive semiaxis, one has to find an analytic continuation of
B�u�. Several methods can be used, Padé approximants con-
stitute one possibility.50–52 However, it is generally believed
that the use of a conformal mapping53,54 is more efficient
since it makes use of the convergence properties of the Borel
sum. Under the assumption that all the singularities of B�u�
lie on the negative real axis and that the Borel-Leroy sum is
analytic in the whole complex plane except for the cut ex-
tending from −1 /a to −�, one can perform the change in
variable,

��u� =
	1 + au − 1
	1 + au + 1

⇔ u��� =
4

a

�

�1 − ��2 �5�

that maps the complex u-plane cut from u=−1 /a to −� onto
the unit circle in the � plane such that the singularities of
B�u� lying on the negative axis now lie on the boundary of
the circle 
�
=1. The resulting expression B�u���� has a con-
vergent Taylor expansion within the unit circle 
�
�1 and
can be rewritten as

B�u���� = �
n

dn�a,b����u��n, �6�

where the coefficients dn�a ,b� are computed so that the re-
expansion of the right-hand side �rhs� of Eq. �6� in powers of
u coincides with that of Eq. �1�. One obtains through Eq. �6�
an analytic continuation of B�u� in the whole u cut plane so
that a resummed expression of the series f can be written as

fR�u� = �
n

dn�a,b��
0

�

dte−ttb���ut��n. �7�

In practice, it is interesting to generalize the expression
�7� by introducing55 the expression

fR�u� = �
n

dn��,a,b��
0

�

dte−ttb ���ut��n

�1 − ��ut��� �8�

whose meaning will be explained just below.

If an infinite number of terms of the series fR�u� were
known, expression �8� would be independent of the param-
eters a, b, and �. However, when only a finite number of
terms are known, fR�u� acquires a dependence on them. In
principle, the parameters a and b are fixed by the large-order
behavior of the series,

an→� � �− alo�nn!nblo �9�

which leads to a=alo and b
blo+3 /2,54 where alo and blo
denote the large-order value of a and b. As for �, it is deter-
mined by the strong-coupling behavior of the initial series,

f�u → �� � u�0/2 �10�

which can be imposed at any order of the expansion by
choosing �=�0. The common assumption is that the above
choice of a, b, and � improves the convergence of the re-
summation procedure since it encodes exact results.

Let us however emphasize that, often, only a is known
and that the other parameters, � and b, must be considered
either as free �as, for instance, in Ref. 28� or variational �as,
for instance, in Refs. 42 and 43 where � is determined by
optimizing the apparent convergence of the series�. In any
case, the choice of value of a, �, and b must be validated a
posteriori.

B. O(N) models in three dimensions and principles of
convergence

The dependence of the critical exponents upon the param-
eters a, b, and � is an indicator of the �non� convergence of
the perturbative series. Indeed, in principle, any converged
physical quantity Q should be independent of these param-
eters. However, in practice, at a given order L of approxima-
tion �loop order�, all physical quantities depend �artificially�
on them: Q→Q�L��a ,b ,��. Even if a is fixed at the value
obtained from the large-order behavior, all physical quanti-
ties remain dependent on b and � at finite order. We consider
that the optimal result for Q at order L corresponds to the
values �bopt

�L� ,�opt
�L�� of �b ,�� for which Q depends most weakly

on b and �, i.e., for which it is stationary,

Qopt
�L� = Q�L��bopt

�L�,�opt
�L�� with

� �Q�L��b,��
�b

�
bopt

�L�,�opt
�L�

=� �Q�L��b,��
��

�
bopt

�L�,�opt
�L�

= 0, �11�

where, of course, bopt
�L� and �opt

�L� are functions of the order L.
The validity of this procedure, known as the PMS, re-

quires that there is a unique pair �bopt
�L� ,�opt

�L�� such that Q�L�

is stationary. This is generically not the case: several station-
ary points are often found. A second principle allows us
to “optimize” the results even in the case where there
are several “optimal” values of b and � at a given order
L: this is the so-called PFAC. The idea underlying this
principle is that when the numerical value of Q�L� is almost
converged �that is, L is sufficiently large to achieve a pre-
scribed accuracy� then the next order of approximation must
consist only in small change in this value: Q�L+1��Q�L�.
Thus, the preferred values of b and � should be the ones
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for which the difference between two successive orders
Q�L+1��b�L+1� ,��L+1��−Q�L��b�L� ,��L�� is minimal. In practice,
the two principles should be used together for consistency
and, if there are several solutions to Eq. �11� at order L
and/or L+1, one should choose the couples �bopt

�L� ,�opt
�L�� and

�bopt
�L+1� ,�opt

�L+1�� for which the stationary values Q�L��bopt
�L� ,�opt

�L��
and Q�L+1��bopt

�L+1� ,�opt
�L+1�� are the closest, that is for which

there is fastest apparent convergence. These principles have
been developed and used in Refs. 42, 43, and 54, see also
Ref. 56.

Nice examples where these two principles work very well
and indeed lead to optimized values of the critical exponents
are the O�N� models in d=3 computed perturbatively at
four-, five- and six-loop orders �within the zero-momentum
massive scheme�. The series for the � function of the cou-
pling constant57 are resummed thanks to a conformal Borel
transform. Subsequently, one obtains the fixed-point coordi-
nate u�, its stability being defined by the correction to scaling
exponent �,

� =� ���u�
�u

�
u=u�

. �12�

A positive value of � �or a positive real part if it is complex�
corresponds to a stable fixed point. We show in Fig. 1 the
exponent � of the O�4� model in d=3 as a function of the
parameter b for the values of � for which stationarity is
found for both b and �. As expected, the dependence of �
upon the resummation parameters becomes smaller as the
order in the loop expansion increases as illustrated by the
curves ��b� that flatten between four and six loops, see Fig.
1. At this order, one finds ��0.783. As an indicator of the
quality of the convergence we give the difference between
the fifth and the sixth order for the exponent �: ��L=6�
−��L=5��2�10−4. Note that this case also illustrates the
situation where—at six-loop order—several stationary points
occur and where the PFAC allows us to select a single solu-
tion, see Fig. 1. Our results are comparable with results ob-
tained by Guida and Zinn-Justin58 for N=4: �
=0.774�0.020 �six/seven loops in d=3�, �=0.795�0.030
�within the �5 expansion�.

It is remarkable that the same study performed on other
critical exponents, other values of N and even with other
perturbative series �obtained from the MS scheme, for in-
stance� always leads to the same kind of results with values
of the exponents found that are very close to the best known
values obtained from Monte Carlo simulations. This proves
that the above methodology is indeed efficient.

Finally note that the same argument can also be applied to
the determination of an optimal value of a, aopt, from the
PMS applied to this parameter: if there is convergence of the
resummed series, we expect that aopt almost coincides with
the value determined by the large-order analysis, Eq. �9�,
aopt�alo. The difference between these quantities is a mea-
sure of the convergence level of the series. We show in Fig.
2 on the example of the O�4� model in d=3 that, as expected,
the value aopt is very close to alo and the difference between
��aopt� and ��alo� is extremely small.

The criteria given above are of crucial importance, espe-
cially when considering FD approaches. Indeed, generically
the �nonresummed� series obtained at L loops for the � func-
tion are polynomials of order L+1 in the coupling constant
u. Thus, the fixed-point equation ��u��=0 admits L+1 roots
u� that are either real or complex. Contrary to what occurs
within the � expansion, where the coupling constant is by
definition of order �, in the FD approach no real root can be
a priori selected or, reciprocally, discarded. As a result, the
generic situation is that the number of fixed points as well as
their stability vary with the order L: at a given order, there
can exist several real and stable fixed points or none instead
of a single one. In principle, the resummation procedure al-
lows both to restore the nontrivial Wilson-Fischer fixed point
and to eradicate the nonphysical, spurious, roots. In particu-
lar, we expect that spurious solutions should satisfy neither
the PMS nor the PFAC criteria. We show in Fig. 3 on the
example of the 3d O�4� model that there exists, beside the
usual Wilson-Fisher stable fixed point, a spurious �unstable�
fixed point. As expected, the exponents computed at this
fixed point are very unstable with respect to variations in the
resummation parameters a �the same behavior occurs when
variations in b are considered�, a behavior which, according
to our criteria, is sufficient to discard it.59

A potential difficulty with this procedure is that for more
involved models, bringing into play several coupling con-

5L

4L

6L

6 8 10 12 14
b

0.778

0.780

0.782

0.784

Ω

FIG. 1. �Color online� The exponent � of the three-dimensional
O�4� model as a function of the resummation parameter b at four-,
five-, and six-loop orders. The dot on each curve corresponds to a
stationary value of �=��� ,b� in both � and b directions with a
fixed to its large-order value alo�0.1108. One has ��opt ,bopt�
= �3.2,8.5� at four loops, ��opt ,bopt�= �5.2,9.5� at five loops, and
��opt ,bopt�= �5,13� at six loops.

5L

4L

6L

0.10 0.11 0.12 0.13
a

0.778

0.780

0.782

0.784

Ω

FIG. 2. �Color online� The exponent � of the three-dimensional
O�4� model as a function of the resummation parameter a at four,
five, and six loops. The vertical line corresponds to a=alo

�0.1108. The values chosen for � and b are such that � is station-
ary with respect to � and b when a=alo �see Fig. 1�. Note that
��aopt����alo�.
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stants, the resummation procedure is very likely less efficient
than for the O�N� models since it is performed with respect
to one coupling constant only—see below. In this case, the
instability displayed by the spurious fixed points can be
much weaker than for O�N� models. However, some of the
present authors have previously shown42 that the criterion of
�in�stability given above still remains reliable in these more
general and ambiguous situations. More precisely they have
shown, on the example of frustrated magnets �and on the
model with cubic anisotropy� that fixed points suspected to
be spurious from a stability analysis, have been confirmed to
be so from additional independent arguments. These argu-
ments are: �i� persistence of the fixed point as a nontrivial,
non-Gaussian one up to �and above� the upper critical dimen-
sion d=4, a fact which is forbidden for a �4-like theory �see
Refs. 60 and 61, and reference therein�, �ii� existence of a
topological singularity in the mapping between �N ,d� and
the fixed-point coordinates that makes these last quantities
multivalued functions of �d ,N� that is manifestly a pathol-
ogy.

From the discussion above it appears that a necessary
condition for a fixed point to be considered as a genuine
fixed point is that it satisfies both the PMS and the PFAC. We
however now show on the example of the 2d O�N� models
that, although necessary, these conditions are not sufficient.

C. O(N) models in two dimensions: Anomalous apparent
convergence

The same kind of analysis of the perturbative results ob-
tained from the �4 model in three dimensions can be per-
formed for all N in two dimensions.57 We show in Fig. 4 the
exponent � of the two-dimensional O�4� model obtained at
three, four, and five loops in the zero-momentum massive
scheme and the anomalous dimension 	 at four and five
loops �the three-loop results does not lead to a clear station-
ary behavior�. A conformal Borel resummation method has
been used.

For this model, because of Mermin-Wagner’s theorem,62

the correlation length is infinite at zero temperature only and
the critical exponents are exactly known: 	=0 and �=2.63,64

We can see in Fig. 4 that although the values obtained for
these exponents seem well converged, they are erroneous
since using both the PMS and PFAC one finds: 	�0.12 and
��1.37. It is important to emphasize that N=4 is not an

isolated case in this respect. For all two-dimensional
O�N�—with N�1—models, the critical exponents seem to
be converged at five-loop order but toward erroneous values.
For instance, in the Ising model, and at five loops, Orlov and
Sokolov44 have found 	=0.146, and Pogorelov and Suslov65

	=0.145�14� whereas the exact result is 	=0.25.
We have also studied the a dependence of the critical

exponents. We have found here again that aopt�alo=0.1789,
see Fig. 5. This means that the a dependence is not either a
good indicator of an anomalous apparent convergence in this
case.

An analysis of the underlying reasons of this anomalous
convergence has been performed in the Ising case in Ref. 45
�see also Refs. 66 and 67�. The explanation is that there very
likely exist, in the � function, terms such as 1− �1−u /u��e

with u� the fixed-point value of u and e a small number
�probably 1/7 in the Ising case�.45,68 In the perturbative ex-
pansion performed around u=0, such terms lead to small
contributions to the � function that seems to be under con-
trol. However, they play an important role in the vicinity of
u�; they are even nonanalytic at this point since their deriva-
tives with respect to u are singular at u�. Reconstructing such
terms from a perturbative expansion is thus difficult and, as a
consequence, the perturbative results are doomed to failure
although they look converged. Thus we are lead to the con-

4L6L
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a

�7
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Ω

(a)

4L6L

0.08 0.10 0.12 0.14
a0

1

2

3

4

5
Η

(b)

FIG. 3. �Color online� The exponents � and 	 as functions of a
at the spurious fixed point of the O�4� model in d=3 at four and six
loops. The vertical line corresponds to a=alo�0.1108. The values
considered for � and b are, respectively, equal to 6 and 4. Other
values give similar results. The exponent � is negative since the
spurious fixed point is repulsive.
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FIG. 4. �Color online� The exponents � and 	 of the two-
dimensional O�4� model as functions of the resummation parameter
b at three-, four-, and five-loop order �the result for 	 at three loops
is not displayed since there is no clear stationarity for 	 in this
case�. The parameter a has been fixed at the value obtained from the
large-order behavior: a=alo�0.1789. For � one has ��opt ,bopt�
= �3.1,9� at three loops, ��opt ,bopt�= �3.1,14� at four loops, and
��opt ,bopt�= �3.1,21.5� at five loops. For 	, one has ��opt ,bopt�
= �4.4,10� at four loops and ��opt ,bopt�= �4.6,18� at five loops. The
dot on each curve corresponds to stationary values of �=��� ,b�
and 	=��� ,b� in both directions.
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FIG. 5. �Color online� The exponents � and 	 of the two-
dimensional O�4� model as functions of the resummation parameter
a, at three, four, and five loops �the result for 	 at three loops is not
displayed since there is no clear stationarity in this case�. The ver-
tical line corresponds to alo�0.1789. The values chosen for � and
b are such that the exponents are at their stationary value when a
=alo �see Fig. 4�. Note that the stationary values ��a� and 	�a�
indicated by dots are very close to their values at a=alo.
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clusion that PMS and PFAC are necessary conditions for
convergence but are not sufficient.

Let us now make a remark specific to d=2. In this dimen-
sion, the existence of a non trivial root u� of the � function,
stable with respect to the resummation parameters b and �
and displaying good convergence properties, see Fig. 6, is
not sufficient in itself to know whether the transition is trivial
�taking place at zero temperature� or not since u is not di-
rectly related to the temperature. In principle, the triviality
�for N�3� or nontriviality �for N=1 or 2� of the critical
exponents should be sufficient to conclude. However, as pre-
viously emphasized, the presence of strong nonanalyticities
in the two-dimensional � functions of the Ising and O�N�
models prevent us to do so since they completely spoil the
determination of the critical exponents.

III. FRUSTRATED O(N)ÃO(2) MODELS

Let us now come to the frustrated models we are directly
interested in. A first analysis of the convergence of the MS
series obtained at five loops in these models28 was done in
Ref. 42. In the following, we study these models by analyz-
ing the perturbative series obtained in the massive zero-
momentum scheme at six loops in three dimensions73 and at
five loops in two dimensions,34 a case that the MS series do
not allow to satisfactorily study since the values of the cou-
pling constants at the fixed point are out of the region of
Borel summability.

The Hamiltonian relevant for frustrated systems is given
by69–72

H =� ddx
1

2
����1�2 + ���2�2 + m2��1

2 + �2
2��

+
u

4!
��1

2 + �2
2�2 +

v
12

���1 · �2�2 − �1
2�2

2�� , �13�

where �i, i=1,2 are N-component vector fields. The resum-
mation procedure outlined above can be generalized to the
case where there are several coupling constants as it is the
case for frustrated systems. For a function f of the two vari-
ables u and v known through its series expansion in powers
of u and v, the resummation procedure used in Refs. 30, 33,
and 73 consists in assuming that f can be considered as a
function of u and of the ratio z=v /u,

f�u,z� = �
n

an�z�un �14�

and in resumming with respect to u only. Under this hypoth-
esis, the resummed expression associated with f reads

fR�u,z� = �
n

dn��,a�z�,b;z��
0

�

dte−ttb ���ut;z��n

�1 − ��ut;z���

�15�

with

��u;z� =
	1 + a�z�u − 1
	1 + a�z�u + 1

, �16�

where, as above, the coefficients dn�� ,a�z� ,b ,z� in Eq. �15�
are computed so that the reexpansion of the rhs of Eq. �15� in
powers of u coincides with that of Eq. �14�. Of course, since
the resummation is performed in only one variable, we can-
not expect in this case a convergence of the resummed quan-
tities as good as in the O�N� case.

A. Frustrated models in d=3

We recall in Fig. 7 the results obtained using different
approaches. In the �d ,N� plane, a line Nc�d� is found in all
approaches such that the stable fixed point exists for N
�Nc�d� and disappears for N�Nc�d�. This result is inter-
preted as the occurrence of a second-order transition for val-
ues of N above Nc�d� and a first-order transition for values of
N below Nc�d�. In the � expansion35–37 and within the
NPRG,1,38–41 the lines Nc�d� are both monotonic and are very
similar �see Fig. 7�. They lead to the fact that Nc�d=3��3
and the transition is thus found to be of first order for N=2
and 3 in three dimensions. On the contrary, in the MS
scheme without � expansion,28 the curve Nc�d� is found to
have a S shape, see Fig. 7, and thus, at d=3, fixed points
exist for N=2 and 3. In the massive scheme also fixed points
are found for these values of N.30

The MS scheme perturbative series at five loops were
reexamined in Ref. 42. The bad convergence of the re-
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FIG. 6. �Color online� The fixed-point coupling constant u� of
the O�4� model in d=2: �a� as a function of b at fixed �=3.1, �b� as
a function of � at fixed b=bopt=9 ,14,22 at three, four, and five
loops, respectively. The parameter a has been fixed at alo=0.1789.
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FIG. 7. �Color online� Curves Nc�d� obtained within the � ex-
pansion �Nc

��, the MS scheme without � expansion �Nc
FD� and the

NPRG approach �Nc
NPRG�. The resummation parameters for the MS
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summed series, the analytic properties of the coordinates of
the fixed points �u� ,v�� considered as functions of �d ,N�
�presence of a topological singularity S, see Fig. 7, in the
�d ,N� plane� and the fact that the fixed points found at N
=2 and N=3 in d=3 do not become Gaussian when they are
followed continuously in d up to d=4 led the authors of Ref.
42 to conclude that these fixed points were either spurious or
the results nonconverged. By reanalyzing the resummed se-
ries obtained at six loops in d=3 in the massive scheme we
show in the following �i� that for sufficiently large values of
N �typically N�7� the resummed series for the exponents
converge well, �ii� that for N=2 and 3 these series do not
lead to converged results. The situation is thus similar to
what has already been obtained in the MS scheme.

1. N=8 frustrated model in d=3

Let us start our analysis by the N=8 case to show how the
results obtained at large and small values of N for frustrated
systems display completely different convergence properties.
Since the model involves two coupling constants u and v,
there are two eigenvalues of the stability matrix of the RG
flow at the fixed point that we call �1 and �2. They represent
the generalization of the exponent � of the O�N� models and
they rule the stability of the fixed point: it is attractive when
�1 and �2 have both positive real parts.

We take for a the value obtained from the large-order
analysis: alo=0.0554. We find that the PMS is satisfied at
four-, five- and six-loop orders: for suitable values of the
parameters b and � the two exponents �1 and �2 depend
weakly on these parameters and are reasonably well con-
verged. This is clear from Fig. 8 where we show the b de-
pendence of �1 and �2. Moreover the difference between the
values at five and six loops of, for instance, �1 is small:
�1�L=6�−�1�L=5��0.012. Note that our values of �1 and
�2 in this case are fully compatible with those obtained in
Ref. 32.

We have also studied the a dependence of these quantities
and find that the optimal value of a is close to its large-order
value �aopt�alo=0.0554� as it is the case in the O�N� mod-
els, see Fig. 9.

These results indicate that the convergence properties of
the N=8 frustrated model are globally similar to those of the
O�N� models although less accurate very likely because in
the latter case the resummation is less efficient due to the
presence of two coupling constants.

2. N=2 and N=3 frustrated models in d=3

We now analyze the physical values of N, that is N=2 and
3. In Ref. 42, it has been found in the MS scheme that,
because of the presence of the singularity S �see Fig. 7�
which exists in this scheme for N�7 and d�3.2, the results
obtained from the resummed series above and below N�7
are very different. In the massive scheme, the series are
known in integer space dimensions only and it is thus not
possible to know whether this perturbative scheme leads also
to the existence of a singularity. We nevertheless show that,
within this scheme, the results obtained for N=2 and 3 are
very different from those obtained for N�8 and are fully
compatible with those obtained with the MS scheme.42

Let us first recall that for N=2 and N=3, the fixed point is
�in most cases but not systematically, in particular, for values
of � different from 1,2,3� an attractive focus, that is �1 and
�2 are complex conjugate and Re��1�=Re��2��0. We,
again, take for a the value obtained from the large-order
analysis: alo=0.1108 for N=2 and alo=0.095 for N=3. For
these values of a and for L=4, 5, and 6, we find that Re��1�
�or equivalently Re��2�� considered as a function of � and b
is nowhere stationary, even approximately, see Fig. 10.
Moreover, at fixed � and b, the gap between the values of
Re��1� at two successive loop orders: Re��1��L+1�
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FIG. 8. �Color online� The exponents �1 and �2 of the three-
dimensional frustrated model for N=8 as functions of the resum-
mation parameter b at four-, five-, and six-loop orders. The dot on
each curve corresponds to a stationary value of �=��� ,b� in both
� and b directions with a fixed to its large-order value alo

�0.0554. For �1 one has ��opt ,bopt�= �5.1,14.8� at four loops,
��opt ,bopt�= �7.8,17� at five loops, and ��opt ,bopt�= �7,12.2� at six
loops. For �2 one has ��opt ,bopt�= �6.5,27.1� at four loops,
��opt ,bopt�= �7.9,16.4� at five loops, and ��opt ,bopt�= �7.5,11.7� at
six loops.
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FIG. 9. �Color online� The exponents �1 and �2 of the three-
dimensional frustrated model for N=8 as functions of the parameter
a at four-, five-, and six-loop orders. The vertical lines corresponds
to the large-order value of alo=0.0554. The values chosen for � and
b are such that the exponents are at their stationary value when a
=alo �see Fig. 8�.
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FIG. 10. �Color online� The �real part of the� exponent �1 of the
three-dimensional frustrated model �a� for N=2 and �b� for N=3 as
a function of b for �=6 at four, five, and six loops. The parameter
a has been fixed at the value obtained from the large-order behav-
ior: alo=0.1108 for N=2 and alo=0.095 for N=3. Other values of
the parameter � give similar results.
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−Re��1��L�, is always large, of order 0.5 for N=2 and 0.2 in
the N=3 case, see Fig. 10. Thus neither the PMS nor the
PFAC are satisfied for these values of N.

We have also studied the stability of our results with re-
spect to variations in a for characteristic values of � and b,
see Fig. 11. Here again we find no stationarity.

From these results it clearly appears that the critical ex-
ponents deduced from the resummed series obtained in the
massive scheme in d=3 display both lack of convergence
and of stability for the values N=2 and 3. It seems therefore
very likely that the existence of fixed points for these values
of N is an artifact either of the fixed dimension schemes or of
the resummation method. In any case, we confirm by this
study that there is no reason coming from the fixed dimen-
sion approaches to question the results obtained either within
the � expansion or the NPRG and that, very probably, the
transitions found in d=3 and N=2 and 3 are always of first
order. Let us now perform the same kind of analysis for the
two-dimensional models.

B. Frustrated models in d=2

As already emphasized, the two-dimensional case is par-
ticularly interesting because of the presence of topological
excitations in the Heisenberg case.2 Because of the homo-
topy properties of the symmetry group SO�3� of these sys-
tems, the topological excitations are different from the O�2�
vortices encountered in the ferromagnetic XY system. It is
still an open question to know whether the deconfinement of
these defects could trigger a genuine phase transition, as in
the Kosterlitz-Thouless case. Note that such a phenomenon
would be surprising since one knows from the
spin-wave—low-temperature—approach74–76 that, contrary
to the O�2� model, the spin-spin correlation length of O�3�
frustrated models is finite at low—but nonvanishing—
temperature and that vortices tend to further disorganize the
system. We let aside the delicate question of the very mecha-
nism underlying a hypothetical genuine phase transition in
these systems and focus on the question of the existence of a
finite-temperature fixed point within the FD formalism.

As for the XY case, the question is to know whether there
is a unique or two separate �Ising and KT� phase transitions.
From the most recent Monte Carlo simulations, it has been
argued that there are two distinct but very close phase tran-

sitions, the Ising one taking place at the highest temperature.
Accordingly one could expect the transition to be character-
ized by Ising critical exponents.

In d=2 and for the values of N�4, there is no topological
defects. As a consequence, there cannot be any other fixed
point but the zero-temperature one. Thus, for these values of
N and because of Mermin-Wagner’s theorem, the correlation
length diverges at zero temperature only and with an expo-
nent � which is infinite �exponential divergence of the corre-
lation length�. Moreover the anomalous dimension 	 is al-
ways vanishing at a zero-temperature fixed point as can be
checked on the low-temperature expansion performed within
the nonlinear sigma model.74–76 Thus, as in the two-
dimensional O�N� case, any nonvanishing 	 for N�4 must
be considered as an artifact and, for the perturbation theory,
as a signal of an anomalous apparent convergence, see
above. We start our analysis by the N=8 case and then study
the physically relevant cases: N=2,3.

1. N=8 case in d=2

For N=8 and being given the previous discussion, one
should obtain only trivial results as for the critical exponents:
	=0 and �1=�2=2. We have computed 	 and �1 �the larg-
est eigenvalue� as functions of the resummation parameters
� and b by taking for a the value computed from the large-
order behavior: alo�0.0895. We find a stationary solution
for the two exponents studied, see Fig. 12. However, as in
the O�N� models, we find that the value of 	 thus obtained:
	�0.13 is unphysical since it should be zero. We find �1
�1.79 which is far from the expected physical value �1=2.

We have also studied the a dependence of these expo-
nents. Here again, we find good convergence properties with
an extremum around the value alo, see Fig. 13.

It thus appears that there very likely exist in frustrated
models, as in O�N� models, nonanalytic terms in the � func-
tions that spoil the convergence of the resummed perturba-
tive expansion of the critical exponents. We can already as-
sert that this dramatically alters the relevance of the
perturbative �4 approach for the study of the two-
dimensional frustrated systems.

2. N=2 and N=3 cases in d=2

We now perform the same analysis as above for the physi-
cally relevant values of N, that is N=2 and 3. Let us first
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FIG. 11. �Color online� The �real part of the� exponent �1 of the
three-dimensional frustrated model �a� for N=2 and �b� for N=3 as
a function of a. The vertical lines corresponds to alo=0.1108 for
N=2 and alo=0.095 for N=3. One has taken �=6 and b=25, 20,
and 15 at six, five, and four loops for N=2 and b=20, 15, and 10 at
six, five, and four loops for N=3. Other values of the parameters �
and b give similar results.
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FIG. 12. �Color online� The exponents �1 and 	 in the two-
dimensional frustrated N=8 case as a function of b at four- and
five-loop orders. The dots at each curve correspond to a stationary
value of �=��� ,b� in both � and b directions. For �1 one has:
��opt ,bopt�= �4.7,13.3� at four loops and ��opt ,bopt�= �4.7,21.7� at
five loops. For 	 one has ��opt ,bopt�= �4.55,13.2� at four loops and
��opt ,bopt�= �4.55,22� at five loops.
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notice that, for these values of N, the fixed point starts to
exist beyond three loop order only. We fix a at its large-order
value: a�0.1790 for N=2 and a�0.1534 for N=3.

Let us first discuss the N=2 case. We find that the correc-
tion to scaling exponent �1 �and thus �2� is complex for a
large range of parameters � and b which means that the fixed
point is a focus. We show in Fig. 14 that there is no value of
� and b where �1 is stationary with respect to both param-
eters. Moreover, at fixed � and b, the difference between the
four- and five-loop results is large. This is a clear signal of
the nonconvergence of the value of �1. In Ref. 34, an aver-
age value for this critical exponent has been proposed: �1
=2.05�35�� i0.80�55� at five loops. According to our stabil-
ity and convergence principles, this value does not really
make sense.

The situation is a little bit different for the exponent 	. At
four loops, 	 is nowhere stationary in the � direction as can
be seen in Fig. 15�a� whereas there is an almost stationary
value 	�0.275 at five loops in both � and b directions for
��4.2 and b�11, see Fig. 15�b� �which is compatible with
the value given in Ref. 34 where 	=0.28�8��. We have per-
formed the analysis of the stability of our results for 	 when
a is varied around alo at fixed � and b. We find that indeed
the five-loop results do not vary much with a and that the
optimal value of a is close to alo.

We conclude that the results for the N=2 case show no
convergence with the loop order and a poor stability with
respect to variations in � and b but perhaps for the exponent
	 at five loops. Let us notice that the value found 	
�0.275 is relatively close to the exact value expected for an
Ising transition �	=0.25�. However, at the same time, it is
far from the five-loop value 	=0.146 �Ref. 44� obtained di-
rectly with the �4 field theory. We shall develop on this
below.

Let us now examine the N=3 case, Fig. 16. The fixed
point is again a focus. The difference with the N=2 case is
that there now exists a stationary point for Re��1� at five
loops for ��5.95 and b=10.25, but not at four loop order,
see Fig. 16�a�, where there is no stationarity with respect to
�. At this stationary point, one has Re��1��1.78 �which is
compatible with the result found in Ref. 34: Re��1�
=1.55�25� that anyway displays a large error bar�. We find
stationary points for 	 at four- and five-loop orders, see Fig.
16�b�. At five loops the value of 	 at the stationary point is
	=0.23 �that compares well with the value 	=0.23�5� of
Ref. 34�. The convergence seems better in this N=3 case
than in the N=2 case since now both �1 and 	 display sta-
tionary values.

From the discussion above one could be tempted to con-
clude, in the N=3 case, that the value 	=0.23, although
affected by a large error bar ��	=0.05 according to Ref. 34�,
is sufficiently large to ensure that 	 does not vanish, as
claimed in Ref. 34. In this case the transition would be non-
trivial, that is, would occur at finite temperature. We now
argue that the results obtained at five loops are not suffi-
ciently accurate to support this conclusion. The reason is that
the error on 	 is, in fact, underestimated. To see this we have
computed 	�N� �according to our two principles� for all val-
ues of N between 2 and 8, see Fig. 17. As already empha-
sized there cannot exist nontrivial fixed points and, thus,
nonvanishing anomalous dimensions 	 for any value of N
�4. As seen in Fig. 17 this is violated by the perturbative
results at five loops. This implies that the error �	 on 	 at
five loops is of order 	 itself, that is, in the N=4 case, of
order 0.20. Being given that 	�N� is monotonically decreas-
ing, the error bar increases as N decreases. In the N=3 case,
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FIG. 14. �Color online� The �real part of the� exponent �1 of the
two-dimensional frustrated model for N=2 as a function of b for
different values of � �a� at four loops and for �=1.4,2.4,3.4,4.4
�b� at five loops and for �=1,2 ,3 ,4 ,5. We have chosen a
�0.1790.
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FIG. 16. �Color online� The �real part of the� exponent �1 and 	
of the two-dimensional frustrated model for N=3 as functions of b
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��opt ,bopt�= �4.45,16.6�. The value of a has been taken equal to its
large-order value a�0.1534.
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FIG. 13. �Color online� The exponents �1 and 	 in the two-
dimensional frustrated model for N=8 as functions of a at four and
five loops. The vertical lines corresponds to a=aopt=0.0895. The
values of � and b are such that the exponents are at their stationary
values when a=alo �see Fig. 12�.
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the error bar is thus at least equal to 0.20 and since
	�N=3� is found to be equal to 0.23 it is impossible to con-
clude that 	 is nonvanishing in this case. While our consid-
erations extend also very likely to the N=2 case as for the
existence of a large error on the result, this case is particular.
Indeed for N=2 one expects 	=0.25 since the transition
likely belongs to the Ising universality class. At first sight,
the value found at five loops �	=0.275� could seem encour-
aging. However, let us recall that one finds 	=0.146 from
the one-component �4 model in d=2 �Refs. 44 and 65�
which is very far from the expected result. As can be seen
from the N�4 results, the series for frustrated magnets do
not exhibit better convergence properties than those of the �4

model and thus the value of 	 found in the N=2 frustrated
case should very likely be interpreted as a numerical coinci-
dence. This conclusion is reinforced by the fact that, as ex-
plained previously, the stability properties of 	 in the N=2
case are also unsatisfactory, see Fig. 15.

IV. CONCLUSION

We have investigated the series obtained from FD pertur-
bative approaches in zero-momentum massive RG scheme
for O�N� models and frustrated magnets both in d=2 and in
d=3 at five- and six-loop orders, respectively. From a gen-
eral point of view, the result of our study is that only the
O�N� models in d=3 provides unambiguous and precise re-
sults. For frustrated magnets, our results in d=3, that show
an absence of stationarity of the exponents considered as
functions of the resummation parameters � and b and a bad
convergence with the number of loops, provide strong sup-
port to the spurious character of the fixed points found for
N=2 and N=3. Without providing a definitive answer to the
question of the nature of the phase transition that frustrated

magnets undergo in d=3 our results weaken a lot the predic-
tions of a second-order behavior. Since all other studies than
the FD approaches �� expansion, NPRG� predict first-order
behavior �see Ref. 1�, we are naturally led to the conclusion
that three-dimensional frustrated magnets should always ex-
hibit first-order behaviors.

In d=2, the situation is more ambiguous since the critical
exponents satisfy the PMS in some cases �at some orders and
for some critical exponents�. At first sight, one could deduce
from these results the existence, for Heisenberg spins, of a
finite-temperature phase transition triggered by the decon-
finement of topological excitations. However, a careful com-
parative study between the O�N� and frustrated models
shows that the presence of nonanalycities spoils the determi-
nation of the critical exponents and forbids to conclude.

It is not clear that only a few higher orders of the pertur-
bative expansion would be sufficient to clarify the situation
and one has to think about another approach in both d=2 and
d=3. From this point of view, the NPRG seems to be able to
circumvent the main difficulties. Indeed being not based on a
perturbative expansion �in the traditional sense�, it does not
suffer from some of the problems encountered in the weak-
coupling approaches. In particular, it seems to be unaffected
by the problems of nonanalyticities since the value found for
	 in the d=2 Ising case is, within this approach, found equal
to 0.254,77 in excellent agreement with the exact result. The
d=2 case for both frustrated Heisenberg and XY systems is
under investigation.78

Let us finally emphasize that the methodology put for-
ward in this paper could be relevant for any system analyzed
within the FD perturbative approach. Indeed, in this case, the
existence of spurious fixed points is the generic case and one
has to be especially careful when fixed points that have no
counterpart within the �-expansion approach occur. In such
circumstances, the principles employed here—PMS and
PFAC—can be of great interest to reject or to accept the
fixed points as physical solutions.
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